При разработке базы данных можно выделить несколько уровней моделирования:
Сама предметная область
Модель предметной области
Логическая модель данных
Физическая модель данных
Собственно база данных и приложения
Ключевые решения, определяющие качество будущей базы данных закладываются на этапе разработки логической модели данных. "Хорошие" модели данных должны удовлетворять определенным критериям:
Адекватность базы данных предметной области
Легкость разработки и сопровождения базы данных
Скорость выполнения операций обновления данных (вставка, обновление, удаление)
Скорость выполнения операций выборки данных
Первая нормальная форма (1НФ) - это обычное отношение. Отношение в 1НФ обладает следующими свойствами:
В отношении нет одинаковых кортежей.
Кортежи не упорядочены.
Атрибуты не упорядочены.
Все значения атрибутов атомарны.
Отношения, находящиеся в 1НФ являются "плохими" в том смысле, что они не удовлетворяют выбранным критериям - имеется большое количество аномалий обновления, для поддержания целостности базы данных требуется разработка сложных триггеров.
Отношение второй нормальной форме (2НФ) тогда и только тогда, когда отношение находится в 1НФ и нет неключевых атрибутов, зависящих от части сложного ключа.
Отношения в 2НФ "лучше", чем в 1НФ, но еще недостаточно "хороши" - остается часть аномалий обновления, по-прежнему требуются триггеры, поддерживающие целостность базы данных.
Отношение третьей нормальной форме (3НФ) тогда и только тогда, когда отношение находится в 2НФ и все неключевые атрибуты взаимно независимы.
Отношения в 3НФ являются самыми "хорошими" с точки зрения выбранных нами критериев - устранены аномалии обновления, требуются только стандартные триггеры для поддержания ссылочной целостности.
Переход от ненормализованных отношений к отношениям в 3НФ может быть выполнен при помощи алгоритма нормализации. Алгоритм нормализации заключается в последовательной декомпозиции отношений для устранения функциональных зависимостей атрибутов от части сложного ключа (приведение к 2НФ) и устранения функциональных зависимостей неключевых атрибутов друг от друга (приведение к 3НФ).
Корректность процедуры нормализации (декомпозиция без потери информации) доказывается теоремой Хеза.