Логическая модель данных является начальным прототипом будущей базы данных. Логическая модель строится в терминах информационных единиц, но без привязки к конкретной СУБД. Более того, логическая модель данных необязательно должна быть выражена средствами именно реляционной модели данных. Основным средством разработки логической модели данных в настоящий момент являются различные варианты ER-диаграмм
(Entity-Relationship, диаграммы сущность-связь). Одну и ту же ER-модель можно преобразовать как в реляционную модель данных, так и в модель данных для иерархических и сетевых СУБД, или в постреляционную модель данных. Однако, т.к. мы рассматриваем именно реляционные СУБД, то можно считать, что логическая модель данных для нас формулируется в терминах реляционной модели данных.
Решения, принятые на предыдущем уровне, при разработке модели предметной области, определяют некоторые границы, в пределах которых можно развивать логическую модель данных, в пределах же этих границ можно принимать различные решения. Например, модель предметной области складского учета содержит понятия "склад", "накладная", "товар". При разработке соответствующей реляционной модели эти термины обязательно должны быть использованы, но различных способов реализации тут много - можно создать одно отношение, в котором будут присутствовать в качестве атрибутов "склад", "накладная", "товар", а можно создать три отдельных отношения, по одному на каждое понятие.
При разработке логической модели данных возникают вопросы: хорошо ли спроектированы отношения? Правильно ли они отражают модель предметной области, а следовательно и саму предметную область?
Физическая модель данных. На еще более низком уровне находится физическая модель данных. Физическая модель данных описывает данные средствами конкретной СУБД. Мы будем считать, что физическая модель данных реализована средствами именно реляционной СУБД, хотя, как уже сказано выше, это необязательно. Отношения, разработанные на стадии формирования логической модели данных, преобразуются в таблицы, атрибуты становятся столбцами таблиц, для ключевых атрибутов создаются уникальные индексы, домены преображаются в типы данных, принятые в конкретной СУБД.
Ограничения, имеющиеся в логической модели данных, реализуются различными средствами СУБД, например, при помощи индексов, декларативных ограничений целостности, триггеров, хранимых процедур. При этом опять-таки решения, принятые на уровне логического моделирования определяют некоторые границы, в пределах которых можно развивать физическую модель данных. Точно также, в пределах этих границ можно принимать различные решения. Например, отношения, содержащиеся в логической модели данных, должны быть преобразованы в таблицы, но для каждой таблицы можно дополнительно объявить различные индексы, повышающие скорость обращения к данным. Многое тут зависит от конкретной СУБД.
При разработке физической модели данных возникают вопросы: хорошо ли спроектированы таблицы? Правильно ли выбраны индексы? Насколько много программного кода в виде триггеров и хранимых процедур необходимо разработать для поддержания целостности данных?
Собственно база данных и приложения. И, наконец, как результат предыдущих этапов появляется собственно сама база данных. База данных реализована на конкретной программно-аппаратной основе, и выбор этой основы позволяет существенно повысить скорость работы с базой данных. Например, можно выбирать различные типы компьютеров, менять количество процессоров, объем оперативной памяти, дисковые подсистемы и т.п. Очень большое значение имеет также настройка СУБД в пределах выбранной программно-аппаратной платформы.
Но опять решения, принятые на предыдущем уровне - уровне физического проектирования, определяют границы, в пределах которых можно принимать решения по выбору программно-аппаратной платформы и настройки СУБД.
Таким образом ясно, что решения, принятые на каждом этапе моделирования и разработки базы данных, будут сказываться на дальнейших этапах. Поэтому особую роль играет принятие правильных решений на ранних этапах моделирования.