Введение в системы управления базами данных




Выводы



Выводы

Доступ к реляционным данным возможен при помощи операторов реляционной алгебры. Реляционная алгебра представляет собой набор операторов, использующих отношения в качестве аргументов, и возвращающие отношения в качестве результата. Реляционная алгебра замкнута таким образом, что результаты одних реляционных выражений можно использовать в других выражениях.

Традиционно определяют восемь реляционных операторов, объединенных в две группы.

Теоретико-множественные операторы: объединение, пересечение, вычитание, декартово произведение.

Специальные реляционные операторы: выборка, проекция, соединение, деление.

Для выполнения некоторых реляционных операторов требуется, чтобы отношения были совместимы по типу.

Не все операторы реляционной алгебры являются независимыми - некоторые из них выражаются через другие реляционные операторы. Операторы соединения, пересечения и деления можно выразить через другие реляционные операторы, т.е. эти операторы не являются примитивными. Оставшиеся реляционные операторы (объединение, вычитание, декартово произведение, выборка, проекция) являются примитивными операторами - их нельзя выразить друг через друга.

Имеется несколько типов запросов, которые нельзя выразить средствами реляционной алгебры. К ним относятся запросы, требующие дать в ответе список атрибутов, удовлетворяющих определенным условиям, построение транзитивного замыкания отношений, построение кросс-таблиц. Для получения ответов на подобные запросы приходится использовать процедурные расширения реляционных языков.

 







Начало  Назад  



Книжный магазин